
KRASH
CPU Load Generation on Many-Core Machines

Guillaume Huard and Swann Perarnau

Moais INRIA Team, CNRS LIG Lab, Grenoble University

France

Tuesday, 20 April 2010

Huard, Perarnau (LIG/Grenoble U.) KRASH Tuesday, 20 April 2010 1 / 27

Motivations

Outline

1 Motivations

2 Basic Notions

3 Existing CPU Load Generation Methods: an Overview

4 KRASH

5 Validation

6 Conclusion

Huard, Perarnau (LIG/Grenoble U.) KRASH Tuesday, 20 April 2010 2 / 27

Motivations

Evolution of computing machines

Towards Many-Core Systems

No more CPU frequency scaling.
Who has the biggest number of cores ?

Simple system used as computing servers

Single machine with 4-32 cores

No use as a desktop

Used as shared computing servers

Huard, Perarnau (LIG/Grenoble U.) KRASH Tuesday, 20 April 2010 3 / 27

Motivations

Towards Heterogeneous Systems

Shared machines

Multiple users, multiple programs in a single address space

Fair Scheduling Policy

Specialized cores

GPU inside CPU

Variable frequencies

Hybrid architectures (ex: Cell)

Huard, Perarnau (LIG/Grenoble U.) KRASH Tuesday, 20 April 2010 4 / 27

Motivations

Dynamic Heterogeneity

00 04 08 12 16 20 00

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0

 20

 40

 60

 80

 100

Load (%)

Full Day Load

Time (in hours)

CPU Core Number

Load (%)

Shared Memory, Many-Core systems present a dynamic heterogeneity.

Huard, Perarnau (LIG/Grenoble U.) KRASH Tuesday, 20 April 2010 5 / 27

Motivations

Classical Parallel Programming Challenged

New Paradigms for Heterogenous Systems

�ne grained parallelization + work-stealing [Blumofe 1995]

adaptive parallel algorithms [Roch & al. 2008]

New Evaluation Criteria

Struggling capacity for resources access (out of our scope)

E�cient use of given resources

How to Compare Them ?

We must use a controlled environment.

Huard, Perarnau (LIG/Grenoble U.) KRASH Tuesday, 20 April 2010 6 / 27

Motivations

Our Goal: Help experimental evaluation

Classical scienti�c methodology

Identify a representative environment,

Compare algorithms in this same experimental conditions.

Challenge : design a load generation tool

Producing heterogeneous environment from dedicated machines.

Guarantying reproducibility.

Insensitive to other applications e�orts to take control of resources.

In this �rst work, we focus on CPU load only

Huard, Perarnau (LIG/Grenoble U.) KRASH Tuesday, 20 April 2010 7 / 27

Basic Notions

Outline

1 Motivations

2 Basic Notions

3 Existing CPU Load Generation Methods: an Overview

4 KRASH

5 Validation

6 Conclusion

Huard, Perarnau (LIG/Grenoble U.) KRASH Tuesday, 20 April 2010 8 / 27

Basic Notions

Timeslicing and Resolution

Timeslice

Period of exclusive access to a CPU core.

CPU Load (during time interval)

Proportion of unavailability : core assigned to some process or in the kernel

Timeslice Size

Quite large : typically 1ms to 10ms

Fair share between processes is only reached asymptotically.

Notion of scheduler resolution.

Huard, Perarnau (LIG/Grenoble U.) KRASH Tuesday, 20 April 2010 9 / 27

Basic Notions

Example Load Pro�le

 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200

C
P

U
 L

o
a

d
 (

%
)

Time (s)

CPU Load Profile Observed

Load pro�le of a dynamic environment

(several NAS instances started and stoped at various times) run in concurrence

with a Linpack instance

Huard, Perarnau (LIG/Grenoble U.) KRASH Tuesday, 20 April 2010 10 / 27

Basic Notions

A Good Load Generator

Requirements

Precision, Reactivity

Noise insensitivity

Must Avoid

Intrusiveness

Obtrusiveness

Huard, Perarnau (LIG/Grenoble U.) KRASH Tuesday, 20 April 2010 11 / 27

Existing CPU Load Generation Methods: an Overview

Outline

1 Motivations

2 Basic Notions

3 Existing CPU Load Generation Methods: an Overview

4 KRASH

5 Validation

6 Conclusion

Huard, Perarnau (LIG/Grenoble U.) KRASH Tuesday, 20 April 2010 12 / 27

Existing CPU Load Generation Methods: an Overview

Various methods

Run a CPU intensive process. ⇒ No control on the load.

Adjust priority during
execution.

⇒ Load sensitive to environment.

Realtime process. ⇒ Changes scheduler behavior.

Wrekavoc: Start/Stop
applications [Jeannot,2009].

⇒ Scales badly, hiders scheduling
heuristics.

Scale CPU frequency. ⇒ Modi�es hardware
charactiristics.

Huard, Perarnau (LIG/Grenoble U.) KRASH Tuesday, 20 April 2010 13 / 27

Existing CPU Load Generation Methods: an Overview

Various methods

Run a CPU intensive process. ⇒ No control on the load.

Adjust priority during
execution.

⇒ Load sensitive to environment.

Realtime process. ⇒ Changes scheduler behavior.

Wrekavoc: Start/Stop
applications [Jeannot,2009].

⇒ Scales badly, hiders scheduling
heuristics.

Scale CPU frequency. ⇒ Modi�es hardware
charactiristics.

Huard, Perarnau (LIG/Grenoble U.) KRASH Tuesday, 20 April 2010 13 / 27

Existing CPU Load Generation Methods: an Overview

Various methods

Run a CPU intensive process. ⇒ No control on the load.

Adjust priority during
execution.

⇒ Load sensitive to environment.

Realtime process. ⇒ Changes scheduler behavior.

Wrekavoc: Start/Stop
applications [Jeannot,2009].

⇒ Scales badly, hiders scheduling
heuristics.

Scale CPU frequency. ⇒ Modi�es hardware
charactiristics.

Huard, Perarnau (LIG/Grenoble U.) KRASH Tuesday, 20 April 2010 13 / 27

Existing CPU Load Generation Methods: an Overview

Various methods

Run a CPU intensive process. ⇒ No control on the load.

Adjust priority during
execution.

⇒ Load sensitive to environment.

Realtime process. ⇒ Changes scheduler behavior.

Wrekavoc: Start/Stop
applications [Jeannot,2009].

⇒ Scales badly, hiders scheduling
heuristics.

Scale CPU frequency. ⇒ Modi�es hardware
charactiristics.

Huard, Perarnau (LIG/Grenoble U.) KRASH Tuesday, 20 April 2010 13 / 27

Existing CPU Load Generation Methods: an Overview

Various methods

Run a CPU intensive process. ⇒ No control on the load.

Adjust priority during
execution.

⇒ Load sensitive to environment.

Realtime process. ⇒ Changes scheduler behavior.

Wrekavoc: Start/Stop
applications [Jeannot,2009].

⇒ Scales badly, hiders scheduling
heuristics.

Scale CPU frequency. ⇒ Modi�es hardware
charactiristics.

Huard, Perarnau (LIG/Grenoble U.) KRASH Tuesday, 20 April 2010 13 / 27

Existing CPU Load Generation Methods: an Overview

Existing Solutions Issues

50% load during NAS DT (communications intensive MPI application).

Execution time
avg std. dev. Slowdown Issue

None 2.9 0.5 1 -
Real time priority 11.3 3.2 3.9 less comm./comp. overlapping
Start/Stop NA NA > 100 Supervision overhead
Frequency scaling 4.4 0.6 1.5 more comm./comp. overlapping

Current methods fail to load complex applications.

Huard, Perarnau (LIG/Grenoble U.) KRASH Tuesday, 20 April 2010 14 / 27

KRASH

Outline

1 Motivations

2 Basic Notions

3 Existing CPU Load Generation Methods: an Overview

4 KRASH

5 Validation

6 Conclusion

Huard, Perarnau (LIG/Grenoble U.) KRASH Tuesday, 20 April 2010 15 / 27

KRASH

Our claim

Interact directly with the Scheduler

Precision, Reactivity ensured.

Noise insensitive.

(Very) Low Intrusiveness.

No Obtrusiveness.

Huard, Perarnau (LIG/Grenoble U.) KRASH Tuesday, 20 April 2010 16 / 27

KRASH

Our Load Generation Method

1 Use cpu a�nity to attach a process (boulder)to each core.

2 Use group scheduling to assign timeslices to boulders.

3 use a supervisor process to adjust group priorities when needed.

Huard, Perarnau (LIG/Grenoble U.) KRASH Tuesday, 20 April 2010 17 / 27

KRASH

CPU 0 CPU 1

CPU 2 CPU 3

Huard, Perarnau (LIG/Grenoble U.) KRASH Tuesday, 20 April 2010 18 / 27

KRASH

CPU 0 CPU 1

CPU 2 CPU 3

App1
App1

App2

App1

App2

App3

App3

Huard, Perarnau (LIG/Grenoble U.) KRASH Tuesday, 20 April 2010 18 / 27

KRASH

CPU 0 CPU 1

CPU 2 CPU 3

App1

Boulder0

App1

App2

Boulder1

App1

App2

App3

Boulder2

App3

Boulder3

Huard, Perarnau (LIG/Grenoble U.) KRASH Tuesday, 20 April 2010 18 / 27

KRASH

CPU 0 CPU 1

CPU 2 CPU 3

App1

Boulder0

App1

App2

Boulder1

App1

App2

App3

Boulder1

App3

Boulder3

Huard, Perarnau (LIG/Grenoble U.) KRASH Tuesday, 20 April 2010 18 / 27

KRASH

CPU 0 CPU 1

CPU 2 CPU 3

Huard, Perarnau (LIG/Grenoble U.) KRASH Tuesday, 20 April 2010 18 / 27

KRASH

CPU 0 CPU 1

CPU 2 CPU 3

Huard, Perarnau (LIG/Grenoble U.) KRASH Tuesday, 20 April 2010 18 / 27

KRASH

CPU 0 CPU 1

CPU 2 CPU 3

Huard, Perarnau (LIG/Grenoble U.) KRASH Tuesday, 20 April 2010 18 / 27

KRASH

KRASH

C/C++ Implementation

Linux only,

Supervising process mostly sleeping,

Using control cgroups VFS.

Input
cpu { # begin cpuinj

... # config params
profile { # the load profile itself

0 { # cpuid to load
0 70 # load 70% of the cpu
60 30 # after one minute only 30% the cpu
120 50

}
1 { # another cpu loaded

0 70
10 30

}
} # end of profile

} # end cpuinj
kill 150 # stop krash after 150 seconds

Huard, Perarnau (LIG/Grenoble U.) KRASH Tuesday, 20 April 2010 19 / 27

KRASH

KRASH Load Reproduction

 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200

C
P

U
 L

o
a

d
 (

%
)

Time (s)

CPU Load Generated
Reference Profile

Reproduction performed by KRASH run in concurrence with a Linpack instance

Huard, Perarnau (LIG/Grenoble U.) KRASH Tuesday, 20 April 2010 20 / 27

Validation

Outline

1 Motivations

2 Basic Notions

3 Existing CPU Load Generation Methods: an Overview

4 KRASH

5 Validation

6 Conclusion

Huard, Perarnau (LIG/Grenoble U.) KRASH Tuesday, 20 April 2010 21 / 27

Validation

In the Paper

Qualitative Comparison

Dynamic load pro�le,

Modi�cation of the scheduler,

Maximum number of loaded process,

Resolution

Quantitative Comparison

Precision and Intrusiveness

E�ects on I/O

E�ects on Network

E�ects on complex applications

Huard, Perarnau (LIG/Grenoble U.) KRASH Tuesday, 20 April 2010 22 / 27

Validation

In the Paper

Qualitative Comparison

Dynamic load pro�le,

Modi�cation of the scheduler,

Maximum number of loaded process,

Resolution

Quantitative Comparison

Precision and Intrusiveness

E�ects on I/O

E�ects on Network

E�ects on complex applications

Huard, Perarnau (LIG/Grenoble U.) KRASH Tuesday, 20 April 2010 22 / 27

Validation

Quantitative comparison

KRASH is the only tool able to generate dynamic load pro�les
⇒ comparison will be limited to constant load generation

Test platform : NUMA SMP machine

8 dual-core Opteron 875

32 GB RAM

250 GB Raid 1 storage subsystem

Huard, Perarnau (LIG/Grenoble U.) KRASH Tuesday, 20 April 2010 23 / 27

Validation

Obtrusiveness: Mixed (tasks duration, I/Os, CPU)

Constant 50% load during parallel gcc compilation
(varying processes duration, mixed I/Os and CPU intensive tasks)

Execution time
average standard Slowdown Issue

deviation

None 197 3 1 -
KRASH 387 7 2 None
Wrekavoc NA NA > 100 Too many processes

⇒ Supervision overhead
Real time priority 558 5 2.8 RT FIFO prevents

I/Os priority
Frequency scaling 392 21 2 None

I/Os less important than in case I, per process overhead critical

Huard, Perarnau (LIG/Grenoble U.) KRASH Tuesday, 20 April 2010 24 / 27

Conclusion

Outline

1 Motivations

2 Basic Notions

3 Existing CPU Load Generation Methods: an Overview

4 KRASH

5 Validation

6 Conclusion

Huard, Perarnau (LIG/Grenoble U.) KRASH Tuesday, 20 April 2010 25 / 27

Conclusion

Conclusion and Future Works

Krash: a new CPU load generation method

Behaves as would do a CPU intensive application,

Reproducible load : precise, reactive and insensitive to noise,

Unobtrusive : do not induces unexpected performance impact on other
system. resources,

Future Works: extend Krash

To cache (application cache trashing),

To memory (bandwidth sharing),

To I/Os (bandwidth/latency perturbations).

Huard, Perarnau (LIG/Grenoble U.) KRASH Tuesday, 20 April 2010 26 / 27

Conclusion

Thank you for your attention.

Krash is publicly available at http://krash.ligforge.imag.fr/

Huard, Perarnau (LIG/Grenoble U.) KRASH Tuesday, 20 April 2010 27 / 27

http://krash.ligforge.imag.fr/

	Motivations
	Basic Notions
	Existing CPU Load Generation Methods: an Overview
	KRASH
	Validation
	Conclusion

